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Group-theoretical derivation of quadratic elastic invariants 
of two-dimensional quasicrystals of rank five and rank 
seven 

Wenge Yang, Renhui Wang, Di-hua Ding and Chengzheng Hu 
Department of Physics,~Wuhan University, Wuhan 430072. People's Republic of China 

Received 23 March 1995, in final form 22 May 1995 

Abstract. Transformation " i c e s  of phonon and phason strains under symmetry groups 
of two-dimensional (2D) quasicrystals (QCs) which are three-dimensional solids periodically 
stacked by aperiodic planes have been derived by using group representation theory. Quadratic 
invariants have been calculated for all 2D QCs of rank 5 and rank 7. 

1. Introduction 

In the past few'decades, quasicrystals (QCs) have been studied extensively and thoroughly 
in many areas, one of which is symmetries and elastic properties. The linear elasticity 
behaviour of two-dimensional (2D) QCs of.rank 5 [l-31 and rank 7 [MI have been 
discussed. In order to investigate the elastic behaviour the first step is to determine how 
many quadratic invariants there are and what they are. 

As is well known, the invariants of a physical-property tensor in a certain structure are 
determined by the point-group symmetry which the structure possesses. It follows that the 
invariants of all kinds of physical-property teqsor can be obtained with group representation 
theory. For periodic structures, systematic results have already been given (see, e.g., [SI). 

A QC structure in a d-dimensional subspace (the physical space) V, can be obtained 
by intersecting a lattice-periodic structure in an n-dimensional embedding space V with this 
subspace, where the space V is the direct sum of VE and V,, and VI is the orthogonal 
complement of the physical subspace. Recently, Janssen [4] gave a clear theoretical 
explanation for quasiperiodic structures and pointed out that such structures may have either 
crystallographic or non-crystallo,p.phic point-group symmetries. With this consideration, 
Hu er al [6,9] have derived- all the possible point groups of 2D QCs of rank 5 and rank 7. 
In addition, we have also proposed a method for determining the number of independent 
physical constants (i.e. the number of invariants) of QCs. In this paper we would like to 
give an alternative method which makes it. easier to obtain the quadratic forms of strain 
tensors. 

This method is demonstrated in section 2. The explicit quadratic f o r b  are given 
with onefold, twofold, threefold, fourfold, fivefold, sixfold, sevenfold, eightfold, ninefold, 
tenfold, twelvefold, fourteenfold and eighteenfold rotational symmetries in section 3. Some 
remarks are made in section 4. 
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2. Fnndamental theory 

2.1. The basic transformation matrices of vectors 

As in the previous paper [IO], A and Â ' are the coordinate transformation matrices of the 
physical subspace and complementary subspace, respectively. For a 2D QC of rank 5 ,  the 
physical subspace is three dimensional (3D), and the complementary subspace is 2D. If the 
N-fold axis is along Z direction, the matrices A and Â' are 

1 cosor -sinal 0 cosg -sing 

where or = 2 z / N ,  = p a ,  1 6 p c N ,  p and N are relative prime. For the 2D QC of 
rank 7, such as the QCs with sevenfold, ninefold, fourteenfold or eighteenfold symmetry, 
besides d and 2, there is another coordinate transformation matrix k' of complementary 
space with rotation angle y = 4". p # q # 1, and p and N are relative prime. So are q 
and N .  The numbers p and q are determined by the symmetry obeyed by the QC 141. 

2.2. Tramformation matrices of strains 

In QCs there are two types of strain: phonon strain and phason strain. In general, the 
representation of a vector in physical subspace for a 2D QC can be divided into two parts: 
rr (one dimensional (1D) representation) and (2D representation with arotation angle 
a). That in complementary subspace is another 2D representation r$-y wit\ a rotation 
angle g. For the 2D QC with a crystallographic symmetry, r$-y = r:-y; otherwise, 
is not equivalent to rj-y. Let us consider the point groups C,, generated by a proper 
rotation, so that r, = F1, the identity representation. The mathematical treatment can be 
easily extended to the other point groups which include inversion i (x  + -x ,  y -+ - y ,  
z + -z), or horizontal mirror reflection mh (x  + x ,  y -+ y ,  z --f -z), or vertical mirror 
reflection m, (x --f x, y + -y, z -t z or n + -x y -+ y, z + z), or horizontal twofold 
rotation Zh (x  + x ,  y + - y ,  z + -2 or x + -x, y + y. z + -z). 

For the phonon strain field, the six components of E+ transform under 

((rl + rLY) @ (rl i- r!-y))s = zrl + rLY t rll (2) 
where Etj = f ( a j u i  + a iu j ) ,  the superscript S means the symmetrical part, Ell + E= 
and E33 span the two identity representations, and (E13, E=) and (E11 - EZZ,  2E1z) span 
the two 2D representations, r!-y (with rotation angle a) and r/I (with rotation angle 2a). 
respectively. The explicit expressions are as follows: 

(E11 +ED)' = Ell + Ezz 

where the terms in square brackets are related to the old coordinate system, and those in 
primed square brackets to the new coordinate system. 

The phason strain ajwi transforms under 

(4) II I (rl + i-x-y) @ r,, = rLY + r;, + ry1. 
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It follows that (bwI,a3wz),  c a l w l - a z ~ z , a l ~ l + a z ~ 2 ) ,  ( a l w l + a z w z , a l ~ z - ~ ~ l )  span 
the representation r:-? (with rotation angle @), r;, (with @+a)), and r;, (with ( p  -a)), 
respectively, i.e. 

[a3wl]‘= [COSB -sin@] [a3w1] 
a3 wZ sin@ cos@ a3wz 

[ alwl - azwz j ’=  [ cos(b + 01) - sin(@ +a)] [ a lwl  - azwz 
alwz + azwl sin(@+a) cos(b+a) alwz+azwl 

w1 + azwz 

For the 2D QC of rank 7, there is another type of phason strain 8,~;; substituting @ by 
y in equations (5). one can obtain similar results for aju;. 

2.3. Possible quadratic invariants of phonon strain p h o n  strain and coupling between 
phonon strain and p h o n  strain in iwo-dimensional quasicrysra[s 

In QCs, there are three types of quadratic invariant contributing to linear elastic energy: 
phonon strain E;jEkr, phason strain 8, wialwk and coupling between phonon strain and 
phason strain E;jaiwk. In the following, we shall discuss these three types of quadratic 
invariant. 

2.3.1. Quadratic invariants of phonon strain. For conventional crystals, the linear elastic 
energy is determined only by this term, and only one rotational angle a is associated with 
this type of invariant. In QCs, this term is similar to that of crystals. 

For the QC of rank 5 or rank 7, only onefold, twofold, threefold, fourfold, fivefold, 
sixfold, sevenfold, eightfold, ninefold, tenfold, twelvefold, fourteenfold, or eighteenfold 
symmetry is allowable; the rotation angle a = & / N .  

In equation (31, there are two linear invariants E11 + EZZ and E33, giving three quadratic 
invariants (Ell +.E&, EZ3 and (Ell  + Ea)E33. 

(i) If a = 2x ( N  = 1). the remaining four symmetric components: E133 E237 EII - EZZ 
and E n  are also first-order linear invariants: so there are 21 quadratic invariants as in 
triclinic crystals. 

E13 = -EIS E& = -E23 (El1 - &)’ = Eli - E22 E;, = Elz. (6) 

= It follows that, among six phonon strains Eij, four transform under the identity 
representation, and two transform under the ID antisymmetric representation, producing 
13 quadratic invariants. They are E;3, Ei3,  E l 3 E ~  and the products of the four linear 
invariants. 

(iii) If a = x/Z ( N  = 4), the components (El1 - En, 2E12) transform according to 

(ii) If a = n ( N  = Z), the remaining four components transform according to 

~ 

0) 
(E11 - En)’ = -(Ell - E d  
EiZ = -E12 

giving three quadratic invariants (E11 - E z z ) ~ ,  E:2 and (E11 - Ezz )E~z .  Meanwhile the 
components E13 and E= give rise to one quadratic form E:3 + E&. There are seven 
quadratic invariants all together. 

~ 
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(iv) If N is equal to the other integers, neither $y nor ru can be decomposed any 
longer; in this case the dot products of the pairs (E13, E& and (E11 - E a ,  2,512) can be 
expressed as follows: 

Obviously, the first two products in equation (8) are invariants. For the last two expressions, 
if and onIy if 6’ = m2n with m being integer, k(e) is a unit matrix; hence the corresponding 
dot proudct is an invariant. Therefore there are least five quadratic invariants (essential 
phonon invariants), i.e. (Ell+E&, E& (EII+Ez)E~~. Ef3+E& and (Ell -E22)’+4Ef2 
for any 2D QC. 

2.3.2. Quadratic invariants of phason strain. (i) N = 1,2,3,4, or 6: this is the 
case of -QCs with crystallographic symmetries and of rank 5, in this case ,3 = a. By 

comparing equations (3) and (5), one can find that 

and [ E1;iLF], a lwl  + a2wz and Ell + En, and &w,- a2ul and E33 take the same 

transformation matrices, respectively. So, with the corresponding substitutions, the quadratic 
invariants of phason strain for this case take similar forms as that of phonon strain discussed 
above. 

(ii) N = 5,8, 10, or 12: this is the case of QCs with non-crystallographic symmetries 
and of rank 5. In this case ,3 = pa, p = 3,3,3,5, respectively. 

In particular, when N = 8,12, @+a = IZ, then r;, in equaiton (4) can be decomposed 
into two 1D antisymmeQk representations, which give three quadratic invariants (&wI - 
a2w+2, (alw2+a2wl)2 and (alwl-azluz)(alwz+a2wl). Fromequation(5), three invariants 
(a3wl)z+ (a3wd2, (alwl - a2w2)Z+(alw2+azwl)2 and ( a l w l  +a2w2)2+(alwz-azw1)2 
always exist in any case. These three invariants can be called essential phason invariants. 
The other invariants can be determined by the following dot products with the transformation 
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matrices &(e): 
7103 

dot product transformation matrix &(e) 
&(a) 

&-a - zg) 

&(-a) 

M(ci - 2P) 

n;i(-2a) 

&2fl). 

1 
I 

ra3wl, a3wzi [ 2; '' E] 
I [ 
[a1w1+a2wZl 

[ a m  - azwZ, alwz + azwll [ a1wz w1 + -y a2w2 

alwl - aZw2 
al wZ + azwl [a3wl, a3W2i  [ 
alwz + azwl [ a, W, - a2wz ra;wl, a3w2i 

a, w2 - azwl 
[a3wl, a3wZi a,wl + azw2 

alwZ - azwl [altol - a2wz, alwz + aZwli 

(9) 

(iii) N = 7,9, 14, or 18: this is the case of QCs of rank 7. There are two types of 
phason strain, namely ajw; and aiu; with B = pa and y = qa, for the folflowing p-  and 
q-vdues: p = 5, q = 3; p = 2, q = 4; p = 3, q = 5;  p = 5, q = 7. So, there are three 
types of quadratic invariant of phason strain, two self-products (ajwi+wk and a ju i am)  and 
one cross-term (ajwi&uk). The quadratic invariants due to self-products can be obtained in 
the same manner as in (ii). The possible dot products used to construct the invariants due 
to the cross-term are as follows: 

dot product transformation matrix A?(@) 



2.3.3. Coupling between phonon strain and phason strain. If there are common 
representations in Ej j  and 3.w. (or aju;), there must exist coupling invariants between 

I. ' phonon strain and phason strain. 

(i) For 2D QCs with crystallographic symmetries, Ejj and ajwi, transform under the 
same representation. The coupling invariants between phonon sham and phason strain 
can be easily obtained by the dot product between the basis vector of the 1D rational 
representation in Eij and that of the same representation in alwk and between the basis 
vector of the 2D rational representation in E;j and that of the same representation in a,wk. 

(ii) For 2D QCs with non-crystallographic symmetries and of rank 5, ail the possible 
quadratic invariants can be obtained by the dot products betweens [E13, E=], [E11 - 
E=, 2 ~ ~ ~ 1  and [ awl ,  a3w21T, [alwl - azwz, alwz+ azwllT, [alwl - a2w2, alwz + hwllT: 

dot product transformation matrix $(e) 

[ E n ,  E231 [ a3wl hwz] 

tE13, E231 [ a3wZ a3wl]  

[E& E=] [ M ( P )  

[E13,Ez] [a iwz+azwl]  d(-P - 2) 

1 

M @ - a )  

A?(-P -a) 

alwz + azwl 

alwl - azwz 

al w2 - a2wl 
alwl + azwZ 

M(B - 2cu) 

a(-@) 
M@ - 2cu) 

[E137 Ezsl I] 
[Eli - E22.2EizI [ :::] 
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(iii) For 2D QCs of rank 7, the possible coupling invariants between phonon strain and 
phason strain take the form of either E&wX or Eija,uk. Substituting p in (11) by p a  and 
qa,  we obtain all possible invariants. 

It should be noted that, in (SXll), [ A ,  Bl [ g] and [A,  E] [ $1 transform under 

the same representation; hence, if AC + B D  is an invariant, A D  - EC is also an invariant. 

3. Some examples (application) 

In section 2, we have given all the possible quadratic elastic invariants for 2D QCs. In 
following, we shall discuss the cases N = 3, 5 and 7, as examples of three types of 2D 
QC. A similar procedure can be used for the other cases. 

3.1. N = 3: the case for a two-dimensional quasicrystal with crystallographic symmetry 

(8). [E133 E231 transforms under the identity representation due to 3a = 

2n; thus, besides the five essential phonon invariants, another two invariants, namely 
2E13E12 + &(E11 - E=) and E13(Ell - E a )  - 2E23E12 can be obtained. 

Following the discussion in section 2.3.2, the seven similar quadratic invariants of 
phason strain can be written as (alwl+a2wd2, (aIw2-azw1)2, ( a l w l + a z t u z ) ( a l ~ 2 - a ~ ~ l ) ,  
(a3~1)2+(a3wz)2, ( a l ~ l - a z ~ z ) 2 + ( a l w z + a z ~ l ) 2 ,  a3~l(alwz+az~l)+a3~2(alwl-a2wz) 
and a 3 ~ l ( a l ~ l  - a2w2) - a 3 ~ z ( a l ~ z  + azwl). 

I n ( 1 1 ) , ~ - ~ = 0 , ~ + 2 a = 2 n ; t h u s ,  [E13.E23] alwz + azwl 

[&I -~ EZZ, 2E1zl [ Zz: ] ,  and [E11 - EZZ, 2 E d  
identity representation, respectively, which contribute to eight quadratic invariants. 
Combining with the four invariants obtained by dot product between E11 + ED, E33 and 
a1w1 + azw2, alw2 - &wl, a total of 12 quadratic invariants can be obtained. 

3.2. N = 5: the case of a two-dimensional quasicrystal with non-crystallographic 
symmetry and of rank 5 

In equation (S), neither a nor 3a equals 0 or 23~; so there are only five essential phonon 
invariants, and this holds for any N > 5 case. From the consideration of the phonon field, 
all the cases with N 5 can be called transverse isotopic. 
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L _ .  . - - 1 1  

under the unit matrix and, besides the three essential phason invariants, another two quadratic 
invariants of phason strain are obtained as a3wl(alw2 - &wl) + a3wt(alwl + &w2) and 

In (II), 6 +2a = Zx, 6 - 3a = 0; so six invariants are obtained E13(al~~2+ a2wl) + 
a3wl(alwl + a2w2) - a 3 W z ( a l w Z  - a2wI). 

- Eu)a3w2 + 2 ~ ~ ~ a ~ ~ ~ ,  wII - ~ ~ ~ ) a ~ t u ~  - ~ E ~ ~ ~ ~ u J ~ ,  vll - E ~ ) ( ~ ~ w ~  + a2w2) + 2 ~ ~ ~ ( a ~ ~ ~  - a2wl) and 
( ~ 1 ~  - Ez2)(alw2 - a2wI) - ~ E ~ ~ ( ~ ~ u J ~  + a2wz). 

~1 - ~ Z W Z ) ,  E13(alU1 - a2wd  - E ~ ( ~ ~ w ~  + a2wI). 

3.3. N = 7: the care of a two-dimensional quasicrystal with non-crystallographic 
symmetry and of rank 7 

Here, ct = $z, ,3 = 5a, y = 3a; the quadratic invariants of phonon strain take the same 
forms as N = 5. The quadratic invariants of phason strain are 

(i) three essential self-product phason-invariants ajwj a p t ;  
(ii) three essential self-product phason invariants ajuiapk,  plus a3ul(aIuZ + &Ul) + 

a3u2(alul - a2uz) and apl(a lul  - azu2) - a3v2(al% + a2ul), where the latter two are due 
to a + 2y = 2n in (9); 

(iii) six cross-terms ajwi &Uk, namely (alwl +a2w2)(alul -a2~)+(alM2-a2wl)(aluZ+ 
a2vl), (a lwl  + azw2)(alu2 + a 2 u d  - (alwZ - a2wI)(alul - a2u2), and a 3 w l ( a l ~ 2  - a2ul) + 
a3w2(aIvl + a2uZ), a3wl(alul + h u 2 )  - a 3 ~ 2 ( a 1 ~ 2  - a2vl), (alwl + a 2 ~ 2 ) a 3 ~ 2  + (alw2 - 
azw,)a3v, (a lwl+a2w2)a,~l-(al~2-az~1)a3U2due to 20r-p+y = Oand y + p - ~  = 2 ~  
in equation (lo), respectively. 

In ( l l) ,  g + 2a = 2s, y - 3a = 0; so there are six coupling invariants between 
phonon strain and phason strain: E I ~ ( ~ I ~ z  + &w1) + Eu(3lw1 - ~ Z W Z ) .  E13(alw1 - 
aZw2) - E ~ ( ~ ~ w ~  + a2wl), wI1 - E ~ ) ~ ~ u J ~  + ~ E ~ ~ ~ ~ K J ~ ,  m1 - E ~ ~ ) ~ ~ w ~  - 2 ~ ~ ~ a ~ w ~ ,  

- E ~ ) ( ~ ~ u ~ + ~ ~ u ~ ) + ~ E ~ ~ ( ~ ~ u ~ - ~ ~ u ~ )  and ~ E ~ ~ - E ~ ~ ~ ~ ~ ~ u ~ - ~ ~ u ~ ~ - ~ E ~ ~ ~ ~ ~ u ~ + ~ ~ u ~ ~ .  
For N equal to the other integers, one can use a similar procedure; all the results are 

listed in table 1. 
According to conventions in crystallography [Ill, point groups which would become 

identical when a centre of symmetry is added belong to the same Laue class. It is obvious 
that all the phonon strains and phason strains are centrosymmetrical, i.e. that, under the 
action of the symmetry operation ‘inversion’, they remain unchanged. Therefore, elastic 
properties possess an inhinsic centrosymmetry, and hence all point groups belonging to 
the same Laue class have the same elastic properties. In the above, we discussed only 
the cases with c, symmetries. If we add i, mh, Z h  or my operations on the shcture, some 
new symmetries are obtained and we divided all the quasicxystalline point groups into two 
types: type I and type II. When N is odd, then point groups N and 15 belong to type I with 
Abelian groups, N2, N m  and Nm belong to type II with non-Abelian groups; when N is 
even, N ,  15 and N l m  belong to type I, while N22, Nmm, f im2 and NJmmm belong to 
type 11. 

In table 1, we list all the quadratic invariants for N = 1,2,3,4,5,6,7,8,9, 10, 12, 14, 
18. In the sixth column, for N = 1.2,3,4,6, A is a set of linear invariants for both type I 
and type II Laue classes, and B is another set of linear invariants for type I Laue classes, and 
the set of 1D antisymmetry basis vectors for type II Laue classes. So, the dot product of any 
two taken from sets A and B (containing a self-product) is a quadratic invariant for type I 
Laue classes, and the dot product of any two taken from the set A and that from the set B, 
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except one from A and one from B are invariants for type U. We choose m, perpendicular 
to the x axis or 2h along the x axis in the second Laue class in table ,I. All the invariances 
in the sixth column hold for the type I h u e  classes, and those in angular brackets hold 
for type U Laue classes. In the fifth column of table 1, nc, ng, ne are the numbers of 
quadratic invariants of phonon strain, phason strain and coupling.between phonon strain and 
phason strain, respectively, and the numbers without parentheses and those in parentheses 
correspond to those of the type I and type II Laue classes, respectively. 

4. Concluding remarks and discussion 

We have demonstrated a method to derive the quadratic elastic invariants for all the 2D QCs 
of rank 5 and rank 7. The explicit forms are given for the 2D QCs with onefold, twofold, 
threefold, fourfold, fivefold, sixfold, sevenfold, eightfold, ninefold, tenfold, twelvefold, 
fourteenfold or eighteenfold rotational symmetry in table 1. From the results, one can see 
that, among these invariants, five quadratic invariants of phonon strain and three quadratic 
invariants of phason strain are essential for any N: 

If one considers only the planar QCs, i.e. all the terms with subscript 3 are omitted, there 
are two quadratic invariants of phonon strain and two quadratic invariants of phason strain 
remaining; they are (Ell + E22)' and (E11 -E& + 4E:,, which are equivalent to (V .U)' 

and EijEij(i, j = 1,2), (w11 - w2d2 + (wiz + w d 2  and (WIT + w d Z  + (WIZ - w d 2 ,  
which are equivalent to wjjwij and sijwijwji where here 

for i = j 
1 J - ( 1 1  f o r i + j .  

$..- , 

For a conventional crystal, if there are only two quadratic eIastic invariants (i.e. two 
independent elastic constants) in the basal plane, one can call it a transverse isotopic crystal. 
For a 2D QC, we can similarly define such a structure in whose quasiperiodic plane there are 
two quadratic invariants of phonon strain, namely (V . u ) ~  and EijEij, and two quadratic 
invariants of phason strain namely wijwij and s, jwijwji ,  as a transverse isotopic 2D QC. Of 
course, it is not necessary to have coupling between the phonon strain and phason strain for 
any QC. Howeveri the coupling between the phonon strain and phason strain may effect the 
elastic behaviour of the QC. For the planar cases, there is no coupling between the phonon 
strain and phason strain for N = 9, 12, IS. 

If one considers the 2D QC of rank 9, N = 15, 16,20,24 and 30 are allowable. In these 
cases, there are three types of phason strain; a similar procedure can be used to determine 
their properties. 
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