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Group-theoretical derivation of quadratic elastic invariants
of two-dimensional quasicrystals of rank five and rank
seven

Wenge Yang, Renhui Wang, Di-hua Ding and Chengzheng Hu
Department of Physics, Wuhan University, Wuhan 430072, People’s Republic of China

Received 23 March 1995, in final form 22 May 1995

Abstract. Transformation matrices of phonon and phason strains under symmetry groups
of two-dimensional (2D) quasicrystals (QCs) which are three-dimensional solids periodically
stacked by aperiodic planes have been derived by using group representation theory, Quadratic
invariants have been calculated for all 2D QCs of rank 5 and rank 7.

1. Introduction

In the past few decades, quasicrystals (QCs) have been studied extensively and thoroughly
in many areas, one of which is symmetries and elastic properties. The linear elasticity
behaviour of two-dimensional (2D) QCs of rank 5 [1-3] and rank 7 [4-6] have been
discussed. In order to investigate the elastic behaviour the first step is to determine how
many quadratic invariants there are and what they are.

As is well known, the invariants of a physical-property tensor in a certain structure are
determined by the point-group symmetry which the structure possesses. It follows that the
invariants of all kinds of physical-property tensor can be obtained with group representation
theory. For periodic structures. systematic results have already been given (see, e.g., [8]).

A QC structure in a d-dimensional subspace (the physical space} V¢ can be obtained
by intersecting a lattice-periodic structure in an #-dimensional embedding space V' with this
subspace, where the space V is the direct sum of Vg and Vi, and V; is the orthogonal
complement of the physical subspace. Recently, Janssen [4] gave a clear theoretical
explanation for quasiperiodic structures and pointed out that such structures may have either
crystallographic or non-crystallographic point-group symmetries. With this consideration,
Hu et al [6,9] have derived-all the possible poini groups of 2D QCs of rank 5 and rank 7.
In addition, we have also proposed a method for determining the number of independent
physical constants (i.e. the number of invariants) of QCs. In this paper we would like to
give an alternative method which makes it easier to obtain the quadratic forms of strain
tensors.

This method is demonstrated in section 2. The explicit quadratic forms are given
with enefold, twofold, threefold, fourfold, fivefold, sixfold, sevenfold, eightfold, ninefold,
tenfold, twelvefold, fourteenfold and cighteenfold rotational symmetries in section 3. Some
remarks are made in section 4.
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2. Fundamental theory

2.1. The basic transformation matrices of vectors

As in the previous paper [10], A and A’ are the coordinate transformation matrices of the

physical subspace and complementary subspace, respectively. For a 2D QC of rank 5, the

physical subspace is three dimensional (3D), and the complementary subspace is 2D. If the
N-fold axis is along Z direction, the matrices A and A’ are

R cosor —sine O _ .
A=|sine cosa O Al = {C?Sﬁ smﬁ] M
0 0 1 sinff cosf ‘

whete o = 2n/N, B = po, 1 € p < N, p and N are relative prime. For the 2D QC of
rank 7, such as the QCs with sevenfold, ninefold, fourteenfold or eighteenfold symmetry,
besides A and A’, there is another coordinate transformation matrix A” of complementary
space with rotation angle ¥y = geor, p 52 g % 1, and p and N are relative prime. So are g
and N. The numbers p and g are determined by the symmetry obeyed by the QC [4].

2.2. Transformation matrices of strains

In QCs there are two types of strain: phonen strain and phason strain. In general, the
representation of a vector in physical subspace for a 2D QC can be divided into two parts:
T, (one dimensional (1) representanon) and I‘x_y (2D representation with a rotation angle
o). That in complementary subspace is another 2D representanon FJ" with a rotation
angle 8. For the 2D QC with a crystallographic symmetry, I" x__y I"ﬂ_y, otherwise, I"x_y
is not equivalent to I‘ﬂ_y Let us consider the point groups C,, generated by a proper
rotation, so that I'; = 'y, the identity representation. The mathematical treatment can be
easily extended to the other point gronps which include inversion / (x — —x, ¥y — -7,
Z — —z), or horizontal mirror reflection my, (x — x, y — y, z — —z), or vertical mirror
reflection my (x > %, y >+ =y, 2 >z 0rx — —x ¥y ¥, £ = 2), or horizontal twofold
rotation 2, (x > X,y = —y, 2= —ZOr X = —X, ¥y —=> ¥, 2 = —2Z).
For the phonon strain field, the six components of E;; transform under

@+ e @+l NS =2r+Tt +Ty @)

where E;; = 2(a u; -+ d;u;), the superscript S means the symmetrical part, Ey; + Ex
and Es3 span the two 1dent1ty representations, and (Ey3, Eas) and (E1; — Ezz, 2E12) span
the two 2D representations. I"x_y (with rotation angle ) and T'y; (with rotation angle 2¢),
respectively. The explicit expressions are as follows:

(En+En) =En+En

E{ﬁ =S E33 .
Ei; ! __ | cosa —sine || E3 Eis
I:Egg:| "[sina cose :|I:E23:| e )[ 3] -
Eu — Eqp ! _ COS(ZO&) —sin(?.ur) E11 — Egp Ty Ejj — Eas
[ 2E; :I = [sin(Za) cos@e) || 2En | =M@ g, @

where the terms in square brackets are related to the old coordinate system, and those in
primed sguare brackets to the new coordinate system.
The phason strain 8;w; transforms under

(M +T)_ ) @Te, =T5 +T +17,. 4

°
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It follows that (93wy, dzwn), (B1wi — B2wa, dywy + Gawz), (Fwg + dpws, 8wz — B2w) span
the representation I"i-_y (with rotation angle g), '}, (with (8 +)), and I'}, (with (8 —a)),
respectively, i.e.

EXN ' _|cosp —sing || dzun

| 3w [~ [sing  cosB || dsun A

[ 81w — Bawn / _ cos(f+a) —sin(B+w) |]| drwy — d2wn (5)
| d1ws + darwy sin{f +a) cos(B+ ) 1wq + dwy

[ 8wy + azwz]’ - [cos(ﬁ — o) -sin{8 ——cs)] |:61w1 + Bzwz]

L d1wp — d2w sin{f —a&) cos(B — o) dwy — dzun

For the 2D QC of rank 7, there is another type of phason strain 8;uv;; substituting 8 by
¥ in equations (5), one can obtain similar results for 9;v;.

2.3. Possible guadratic invariants of phonon strain, phason strain and coupling between
phoron strain and phason strain in two-dimensional quasicrystals

In QCs, there are three types of quadratic invariant contributing to linear elastic energy:
phonon strain ) E;; Ey, phason strain ), 8;w; 8wy, and coupling between phonon strain and
phason strain  E;;8;wy. In the following, we shall discuss these three types of quadratic
invariant.

2.3.1. Quadratic invariants of phonon strain. For conventional crystals, the linear elastic
energy is determined only by this term, and only one rotational angle o is associated with
this type of invariant. In QCs, this term is similar to that of crystals.

For the QC of rank 5 or rank 7, only onefold, twoifold, threefold, fourfold, fivefold,
sixfold, sevenfold, eightfold, ninefold, tenfold, twelvefold, fourteenfold or eighteenfold
symmetry is allowable; the rotation angle o = 27 /N.

In equation (3), there are two linear invariants E1y+ Eqz and Ej;, giving three quadratic
invariants (Ey; + Ezg)z, E%B and (Eyq + Exn)Es.

(i) If ¢ = 2 (N = 1), the remaining four symmetric components: Eis, Es, Ey — Ex
and Ej; are also first-order linear invariants; so there are 21 quadratic invariants as in
triclinic crystals.

(i) If « = = (N = 2), the remaining four components transform according io

El; =—Eips Ey=—Ep (Enu—En) =En—En El, = Ep. (6

It follows that, among six phonon strains Ej, four transform under the identity
representation, and two transform under the 1D antisymmetric representation, producing
13 quadratic invariants. They are £, EZ;, Ej3Eas and the products of the four linear
invariants.

(iii) If ¢ = m/2 (N = 4), the components {E|; — E22, 2E;;) transform according to

(Eit — EnY = —(Ey — Ex)

)]
Ely=—En

giving three quadratic invariants (Ey; — Ex)?, E}, and (Eyy — Ep)Ej;. Meanwhile the
components Er3 and Eas give rise to one quadratic form EZ; + EZ;. There are seven
quadratic invariants all together.
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(iv) If N is equal to the other integers, neither 1""_y nor 'y can be decomposed any
longer; in this case the dot products of the pairs (E3, Eas) and (Ei1 ~ Ez, 2E13) can be
expressed as follows:

r _ . .
{EB,'EB]I[E:;:[ = [E13,E?3][ cosy sma} [COS“ _Smﬂf:l [Elz]

—siney cose || sine  cosa Eax

) I OfIE

JEn—EnT
[En = Ea, 2E17] 2Es = [En1 — En, 2E]

% [cos(Zoz) —sin(er)] [EH - Ezz]

[ cos(Ze)  sin(2er)
| —sin(2ar)  cos(2e)

Sin(zct) COS(E&) 2512
_ B 1 01[En—Exn]
= {En — Exn, 2Eq2] [0 1] [ 28, | 7 (&)
JEn—En] cosa  sina |[ En —En
[E13, Easl [ 21 =[Eus Enl| _ o0 cosar 2E

= 1B, Bl @) | By 2

, 2E2 _ | cos(3w)  sin(3a) 2E;
[E13. Exs] [E“ - Eﬂ} = 13, En) [- sin(3¢) cos(3af)} [E” - E22:|

- 2E
= [E13, Ens] M (~30) [ Ei _‘2522] :

Obviously, the first two products in equation (8) are invariants. For the last two expressions,
if and only if @ = m2m with m being integer, M () is a unit matrix; hence the corresponding
dot proudct is an invariant. Therefore there are least five quadratic invariants (essential
phonon invariants), i.e. (E11+E27_}2, E§3, (E1+En)Eas, Elza +E%3 and (E;; —E22)2+4Ei°‘2
for any 2D QC.

2.3.2. Quadratic invariants of phason strain. () N = 1,2,3,4, or & this is the
case of QCs with crystallographic symmetries and of rank 5, in this case § = a. By

compating equations (3) and (5), one can find that [gj i;:] and [2; ], [g: E; ; 222312]

and [EHZEHEZZ:I’ w; + Sqwy and Eqy + Egn, and 81wq — dw; and Esz take the same
transformation matrices, respectively. So, with the corresponding substitutions, the quadratic
invariants of phason strain for this case take similar forms as that of phonon strain discussed
above.

(i) N == 5,8, 10, or 12: this is the case of QCs with non-crystallographic symmetries
and of rank 5. In this case 8 = po, p = 3,3, 3, 5, respectively.

In particular, when N = 8, 12, § +« =, then T}, in equaiton (4) can be decomposed
into two 1D antisymmetric representations, which give three quadratic invariants (3;w; —
Bywn)?, (dwa-+8:w1)? and (8 w; — B wx)(B1we+3,w;). From equation (5), three invariants
(3317)% + (B3w2)?, (Brwy — Bpw2)? + (Brwe + B )? and (B1wi + Bawa)? + (Bwa — Bawi)?
always exist in any case. These three invariants can be called essential phason invariants.
The other invariants can be determined by the following dot products with the transformation
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matrices M ®):
dot product

[B3w1, B3] | 3wy + B2y

[35w1, B3]

[83w1, d3wa]

L 31 Wa — azwI

[83w1, 33ws) [3‘ w2

[81w1 — daws, dyws + oz ]

(8w — Sptwe, 1w + dun |

_31w2 + ngl 1
_311.01 - azwg_

v +32w2]

oty |

[ 61w1 —_ 3211)2]

Giwy + daunp i

[31w1 + Bawa

wy — dhw
drwg — Baw
31 th + 32102

|

]

transformation matrix 7 (8)

M (c)

M{—e — 28)
M (=)

M —28)
M(—2a)

M(=28).
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1))

(i} N = 7,9, 14, or 18: this is the case of QCs of rank 7. There are two types of
phason strain, namely 3;w; and 3;v; with § = po and y = qa, for the folflowing p- and
g-values: p=35,g=3;p=2,g=4 p=3,4=735 p=35,9=7 So, there are three
types of quadratic invariant of phason strain, two self-products (d;w; 9wy and &;v; drvy) and
one cross-term (8;w;9;vy). The quadratic invariants due to self-products can be obtained in
the same mapner as in (ii). The possible dot products used to copstruct the invariants due
to the cross-term are as follows:

dot product

[8yw1, dzwa] {;3! ]
(33w1, d3wa] l:g:if]
81wy — daws, Siwo -+ daw]
[B1w — 8wz, Brwa + dawn]
[B1wi + dawy, Brwa — daw]
[B1w1 + dawa, Brwy — 2wl

[azuh,aqwz Buvs + B, |

31 Ua + 321)1

[B3w1, d5wz]

dive — dauy |

311)2 —_ 8201 ]

dawi, 8
[8awi, B3] 8.0 + By

[
=l
[al v + azvg
[

transformation matrix A ()]

My — 8

M(—y ~B)

My — B)

M(=20— g —y)

My — )

MQe—y —p)
M(y —B+a)
M(~y = —a)
My —g—a)
M-y —8)
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[Bywy — dpws, Biws + dywil :g;;;;fg;;;f] My — 8 —2a)

[3rwr — 8wy, O1ws + Baund :313? -_i- g;s;:l M(=B—y)

[B1wr 4 dwy, rws — Bywy] :g::jz[: M(y - g+a)

[81w) + daws, 1wy — Bawn] :gz:jf: Me—B8-v)

[ wy — dzws, B1ws + Bawi] :gzz:: M{—a—B8—1v)

31wy — dywa, 1wz + daun] ;gzz;: My —8—ea)

[0yt + B, Brws — Bpun] :g;g;; gggf] My = B+ 20)

[B1w1 + B0, Byawg — Bywil :giz‘:f g;g;] (8- ). (10)

2.3.3. Coupling between phonon strain and phason strain. If there are common
representations in Ej;; and dw; (or 8;v), there must exist coupling invariants between
phonon strain and phason strain.

(1) For 2D QCs with crystallographic symmetries, E;; and 8;w; transform under the
same representation. The coupling invariants between phonon strain and phason strain
can be easily obtained by the dot product between the basis vector of the 1D rational
representation in E;; and that of the same representation in 8wy and between the basis
vector of the 2D rational representation in E;; and that of the same representation in Brwg.

(ii} For 2D QCs with non-crystallographic symmetries and of rank 5, ail the possible
quadratic invariants can be obtained by the dot products betweens [Eis, El, [E1p ~
Ea, 2E13) and [83w1, S3unlT, [81wy — Baws, Srws + Swi 1T, [Brws — Sowe, fiwe + sl

dot product transformation matrix ¥ (9}
(Bis, B2 | S5t | ZIER)

[Evs, Exs] gj:jﬂ $i(~p )

(B, Bl | S | 6)

(Bis, ] 1o o Hi(~p - 20)

(Bss Bl St o 16 - 22)

(Bis, Easl [ 512 2 | #(-~p)

b -
[Ey — Ex, 2Eu] [ o ] (B — 200)
3W2
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- B
[En — Ex, 2E1] ;wz] M(—p — 20}
| @3y
[ 1wy — Baws | .
(Bu = Ex,2En) | o007 00 | M(B—)
_ 81wz + B0y | -
[Ey Ezz,_zEu] [31w1 — | M(—8 —3a)
E dawy | .
[y — En, 2Bl | gt D202 | M(B - 30)
[ 81wz — 8wy | .
[ — En, 2En] | L2700 M(—p o). (11

(iii) For 2D QCs of rank 7, the possible coupling invariants between phonon strain and
phason strain take the form of either E;;8;w; or E;;dyue. Substituting g in (11) by per and
gor, we obtain all possible invariants,

It should be noted that, in (8)(11), [A, B] [g] and [A, B] [ D | transform under

the same representation; hence, if AC + BD is an invariant, AD — BC is also an invariant.

3. Some examples (application)

In section 2, we have given all the possible quadratic elastic invariants for 2D QCs. In
following, we shall discuss the cases N = 3, 5 and 7, as examples of three types of 2D
QC. A similar procedure can be used for the other cases.

3.1. N = 3: the case for a two-dimensional quasicrystal with crystallographic symmetry

In (8), [Ei3, Ex] [ E112€1?522] transforms under the identity representation due to 3o =

2m; thus, besides the five essential phonon invariants, another two invariants, namely
2E13E12 + Eg,g (Eu - Ezz) and E13(E11 - Ezz) - 2E23E12 can be obtained.

Following the discussion in section 2.3.2, the seven similar quadratic invariants of
phason strain can be written as (8;w; +8w1)?, (81wy— 33w )2, (81w +32w0) 31wy —dar),
(B3w1)%+(B5w2)%, (Frwn — Bown) 2+ (Bywa+82w1)2, B3y (B wa+8awr )+ 33w (B wy — Bawa)
and 33w (Grwn — daws) — Swe(dws + dawy). ‘

3wy dywy + dhwy
In (11), 8 —a =0, 20 = 27; thus, [E;s, s [E13, E: ,
n(1), f—a =0 +20 2 thus [Es3 Ezs}[ang] [E1s %][Blwl—azwz

By — B, 2E] | 3t | and 181y — B, 20 | 5100 5002
identity representation, respectively, which contribute to eight quadratic invariants.
Combining with the four invariants cbtained by dot product between Ej; + Eap, Ess and
1wy -+ drwr, B1wa — dawy, a total of 12 quadratic invariants can be obtained.

] transform under the

3.2. N = 3: the case of a two-dimensional quasicrystal with non-crystallographic
symmetry and of rank 5

In equation (8), neither @ nor 3¢ equals O or 2x; so there are only five essential phonon
invariants, and this holds for any N 2 5 case. From the consideration of the phonon field,
all the cases with N 2> 5 can be called transverse isotopic.
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1w — Sy

81wy + aztUz:[ transforrns
under the unit matrix and, besides the three essential phason invariants, another two quadratic
invariants of phason strain are cobtained as dswq(B1wz — fawy) + wz(Bw; -+ daw,) and
dswi (3 wy + Fzwy) — Bywz(Byws — dawr).

In (11), § + 2 = 2r, § — 30 = 0; so six invariants are obtained: Ey3(8ywq + dpwq) +
En(Giw) — daws), Er3(@1wy — dawa) — Ea(dws + dawn), (Eyy — Exddswy + 2Epdwy,
(Enp — Ex)dswy — 2Epdiws, (B — Exp)(hwy + dws) + 2Ep(dwy — dw) and
(En — Ex)(dywa — dawy) — 2E12(01w) + daws).

In ©), @ = 27, B = 30, & — 2B = —2; 50, [Bawr, B3]

3.3. N =7: the case of a two-dimensional guasicrystal with norn-crystaillographic
symmetry and of rank 7

Here, & = %Jr, B = Su, ¥ = 3¢; the quadratic invariants of phonon strain take the same

forms as N = 5. The quadratic invariants of phason strain are

(i) three essential self-product phason-invariants 9;w; dwy;

(i) three essential self-product phason invariants &;v;dvy, plus v (Grvz + 1) +
datg (01t — dp1n) and v {011y — dava) — F3va (D11 + B2v1), where the latter two are due
to o+ 2y =27 in (9);

(lll) six cross-terms ajw,- aka, na.mely (31 wi +82w2) (31'!)1 —32v2)+(31w2—32w1)(81 v+
811}, (Byw 4 Bw2)(Byvz + 82v1) — (Brws — 2w ) (B1v; — B202), and dzswy (B1v2 — dzu7) +
Swa(81v1 4 82v2), B3w{(Bivy - Gave) — Bawa(Brvz — S2v1), (Drwy + Sawa)d3vs + (Biw:z —
Bawq) 83 (g +dwo)dzu) — (Bjws—daw)dva due to 2a—B+y =0and y+f—o =2x
in equation (10), respectively.

In (1), B + 20 = 27, ¥ — 3¢ = 0; so there are six coupling invariants between
phonon strain and phason strain: E3(81wa -+ Swr) + Exn(w; — dws), Ei(fiw —
Baw) — Egz(diwa + daun), (Eny — Eanddswn + 2Ep8;wy, (En — Exn)diw; — 2E1283w,
(E11— E22)(01v1+0202) +2E)2(81va—32v1) and (Eq1— En) (8102 —d2v1) —2E12(31 V1 +8202).

For N equal to the other integers, one can use a similar procedure; all the results are
listed in table 1.

According to conventions in crystallography [11], point groups which would become
identical when a centre of symmetry is added belong 1o the same Laue class. It is obvious
that all the phonon strains and phason strains are cenfrosyminetrical, i.e. that, under the
action of the symmetry operation ‘inversion’, they remain unchanged. Therefore, elastic
properties possess an intrinsic centrosymmetry, and hence all point groups belonging to
the same Laue class have the same elastic properties. In the above, we discussed only
the cases with ¢, symmetries. If we add [, my, 2; or m, operations on the structure, some
new symmetries are obtained and we divided all the quasicrystalline point groups into two
types: type I and type II. When N is odd, then point groups N and N belong to type I with
Abelian groups, N2, Nm and Nm belong to type II with non-Abelian groups; when N is
even, N, N and N/m belong to type I, while N22, Nmm, Nm2 and N/mmm belong to
type 1L

In table 1, we list all the quadratic invariants for N = 1,2,3,4,5,6,7,8,9, 10, 12, 14,
18. In the sixth columm, for N = 1,2, 3,4, 6, A is a set of linear invariants for both type I
and type II Laue classes, and B is another set of linear invariants for type I Laue classes, and
the set of 1D antisymmetry basis vectors for type II Laue classes. So, the dot product of any
two taken from sets A and B (containing a self-product) is a quadratic invariant for type 1
Laue classes, and the dot product of any two taken from the set A and that from the set B,



Elastic invariants of 2D quasicrystals _ 7111

except one from A and one from B are invariants for type II. We choose m, perpendicular
to the x axis or 2; along the x axis in the second Lave class in table 1. All the invariances
in the sixth column hold for the type I Laue classes, and those in angular brackets hold
for type I Laue classes. In the fifth column of table 1, ne, nx, ny are the numbers of
quadratic invariants of phonon strain, phason strain and coupling between phonon strain and
phason strain, respectively, and the numbers without parentheses and those in parentheses
correspond to those of the type I and type IF Laue classes, respectively.

4. Concluding remarks and discussion

We have demonstrated a method to derive the quadratic elastic invariants for all the 2D QCs
of rank 5 and rank 7. The explicit forms are given for the 2D QCs with onefold, twofold,
threefold, fourfold, fivefold, sixfold, sevenfold, eightfold, ninefold, tenfold, twelvefold,
fourteenfold or eighteenfold rotational symmetry in table 1. From the results, one can see
that, among these invariants, five quadratic invariants of phonon sirain and three quadratic
invariants of phason strain are essential for any N:

If one considers only the planar QCs, i.e. all the terms with subscript 3 are omitted, there
are two quadratic invariants of phonon strain and two quadratic invariants of phason strain
remaining; they are (£, + Ex)® and (Ei1 — Ex) +4E},, which are equivalent to (V - u)?
and EjE;(i, 7 = 1,2), (i — we)? + Wiz + wn)® and (wp + w)? + (wiz — war)?,
which are equivalent to w;;w;; and s;;wy;wy; where here

1 fori=j
Sip =1
Y -1 for i £ j.

For a conventional crystal, if there are only two quadratic elastic invariants (i.e. two
independent elastic constants) in the basal plane, one can call it a transverse isotopic crystal.
For a 2D QC, we can similarly define such a structure in whose quasiperiodic plane there are
two quadratic invariants of phonon strain, namely (V - u)* and Ej;Ey4, and two quadratic
invariants of phason strain namely wy;w;; and s,;w;;wj;, as a transverse isotopic 2D QC. Of
course, it is not necessary to have coupling between the phonon strain and phason strain for
any QC. However, the coupling between the phonon strain and phason strain may effect the
elastic behaviour of the QC. For the planar cases, there is no coupling between the phonon
strain and phason strain for ¥ =9, 12, 18,

If one considers the 2D QC of rank 9, N = 13, 16, 20, 24 and 30 are allowable. In these
cases, there are three types of phason strain; a similar procedure can be used to determine
their properties.
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